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We introduce a new Monte Carlo algorithm for generating self-avoiding walks 
of variable length and free endpoints. The algorithm works in the unorthodox 
ensemble consisting of all pairs of SAWs such that the total number of steps Nto t 
in the two walks is fixed. The elementary moves of the algorithm are fixed-N 
(e.g., pivot) moves on the individual walks, and a novel "join-and-cut" move 
that concatenates the two walks and then cuts them at a random location. We 
analyze the dynamic critical behavior of the new algorithm, using a combination 
of rigorous, heuristic, and numerical methods. In two dimensions the 
autocorrelation time in CPU units grows as N ~1"5, and the behavior improves 
in higher dimensions. This algorithm allows high-precision estimation of the 
critical exponent 7. 

KEY WORDS:  Self-avoiding walk; polymer; Monte Carlo; join-and-cut 
algorithm; pivot algorithm; critical exponent. 

1. I N T R O D U C T I O N  

Much progress has been made in the past 5-10 years in the development 
of new and more efficient Monte Carlo algorithms for simulating the self- 
avoiding walk (see Table I). In particular, the pivot algorithm (1-3),4 is an 
extraordinarily efficient method for simulating SAWs of fixed length N and 
free endpoints: the autocorrelation time (for global observables, in CPU 

1 Scuola Normale Superiore and INFN-Sezione di Pisa, Pisa 56100, Italy. 
2 Department of Physics, Princeton University, Princeton, New Jersey 08544. Present address: 

Dipartimento di Fisica, Universit~ degli Studi di Pisa, Pisa 56100, Italy. 
3 Department of Physics, New York University, New York, New York 10003. 
4 We take this opportunity to record yet another citation from the pre-1985 history of the 

pivot algorithm: Clark and Lal (4) employed the pivot algorithm to study self-avoiding lattice 
chains with an additional nearest-neighbor interaction energy. We thank Marvin Bishop for 
bringing this reference to our attention. Further references can be found in refs. 3 and 5. 
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units) grows only linearly with N. (3) Since it takes a time of order N merely 
to write down an N-step walk, the performance of the pivot algorithm is 
essentially optimal. Simulations in the fixed-length free-endpoint ensemble 
allow the high-precision estimation of the critical exponent v, which 
governs the mean size of SAWs as a function of length. 

Unfortunately, less progress has been made in simulating SAWs with 
variable lengths (and either free or fixed endpoints): the autocorrelation 
time of such algorithms grows at least as {N)  2. Indeed, such a growth is 
inherent in any algorithm whose elementary moves make bounded changes 
in N: roughly speaking, N must perform a random walk on the non- 
negative integers, and the autocorrelation time of such a random walk 
satisfies 

r > var(N) --= < N  2 > - < N >  2 ~ < N >  2 (1.1) 

(ref. 5, Theorems A.6 and A.7). This is a shame, for the variable-length 
ensembles provide the only known efficient means for estimating the critical 
exponents 7 and esing (and the connective constant #), which govern the 
number of SAWs as a function of length. 

In this paper s we propose an efficient--and amazingly simple--algo- 
rithm for simulating SAWs with variable lengths and free endpoints, and 
thereby estimating the critical exponent Y. In order to escape the bound 
(1.1), our algorithm makes unbounded (nonlocal) changes in N. To do this, 
it works in the unorthodox ensemble J-N~o, consisting of all pairs of SAWs 
(o)1, ~o2) (each walk starts at the origin and ends anywhere) such that the 
total number of steps in the two walks is some fixed number Ntot: 

~-Ntot ~ {(C01' (/)2): (D1, 0")2 are self-avoiding, with t~oll + t~o2[ = Ntot}  

Ntot 

~- ~) ~9~Nl X C~LgNtot__ N1 (1 .2 )  
N1 = 0 

Each pair (e)l, co2) in this ensemble is given equal weight; therefore, the 
two walks are noninteracting except for the constraint on the sum of their 
lengths. 

One sweep of the algorithm consists of two steps: 

(a) We update independently each of the two walks, using some 
length-preserving ergodic algorithm. Here we will use the pivot 
algorithm. 

(b) We perform a join-and-cut move: we concatenate the two walks 
co s and co2, forming a new (not necessarily self-avoiding) walk 

5 A preliminary version of this work was reported at the Lattice '90 conference. (ls~ 
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COl oCO2; then we cut COl ~ at a random position, creating two 
new walks CO'l and CO~. If CO'~ and CO~ are both self-avoiding, we 
keep them; otherwise the move is rejected and we stay with co n 
and co2. 

The join-and-cut move is illustrated in Fig. 1. 
Since the algorithm used in step (a) is ergodic in the ensemble of fixed- 

length walks, it is easy to see that the full algorithm is ergodic. (If col and 
CO2 are perpendicular rods, then the join-and-cut move will always succeed.) 
It is also easy to see that the algorithm leaves invariant the equal-weight 
measure 

1 
~(COl, 092) = -  for each (1.3) 

Z ( N t o t )  
(COl' (2)2) ~ ~'-Ntot 

T 

Fig. 1. Join-and-cut move: the two SAWs (upper figure) are concatenated (middle figure) 
and then cut at the point marked with a square (lower figure). Note that the concatenated 
walk need not be self-avoiding. 
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where 

Ntot 

Z ( N t n t )  = 2 CNICN,ot--N1 ( 1 . 4 )  
Nt -- 0 

Here c N is the number of SAWs of length N, starting at the origin and 
ending anywhere; for large N it is believed to scale as 

CN ,'~ pUN~ - 1 ( 1 . 5 )  

Therefore, from the probability distribution of the random variable 
NI-= Ic0i] (the length of the first walk) in the measure (1.3), we can 
obtain estimates of the critical exponent 7 by the maximum-likelihood 
method. (9'~9) Since the join-and-cut move can make large jumps in N I in a 
single step, this evades the bound (1.1). 

The plan of this paper is as follows: In Section 2 we analyze the 
dynamic critical behavior of the algorithm, using a combination of rigorous 
mathematical arguments (Sections 2.1 2.3) and heuristic scaling arguments 
(Sections 2.4-2.5). In Section 3 we discuss the data structures needed in 
implementing the algorithm and analyze the computational complexity. In 
Section 4 we discuss the statistical issues that arise in the estimation of the 
critical exponent ~. In Section 5 we present some numerical results for two- 
dimensional self-avoiding walks. In Section 6 we summarize our results and 
discuss prospects for the future. 

2. D Y N A M I C  C R I T I C A L  B E H A V I O R  

We want now to discuss the dynamic critical behavior of the algorithm 
defined in the preceding section. We shall make free use of the general 
theory of dynamic Monte Carlo methods (autocorrelation times %xv and 
tint, A, relation to spectral properties of the transition matrix, etc.); details 
of this theory can be found in refs. 3, 11, and 20. 

2.1. Trans i t ion  M a t r i c e s  

The transition probability matrix P of the join-and-cut algorithm is a 
product of transition matrices P a  and Pb corresponding to steps (a) and 
(b) of the algorithm. 

The form of Pa depends on the specific algorithm used in step (a). 
By hypothesis, Pa leaves invariant each subspace 5PNI X 5~N2C J-U,o, and 
preserves the equal-weight distribution on this subspace; it therefore also 
preserves the equal-weight distribution ~ on 3--Uto~. (If, moreover, Pa satisfies 
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detailed balance on each subspace 5~uz x ~v2, then it satisfies detailed 
balance on J-Nto," Detailed balance is convenient but not necessary,) 

The transition matrix Pe is given by 

/'~((0)~, 0)~) -~ (0)i, 0)i)) 

r 1 
N t o  t -t'- 1 

1 + C(0)1 o 0)2) 

Ntot + 1 

0 

if 0)~0 0)~ = 0)1 ~ 0)2 and 
0)'1, 0)~ are both self-avoiding 
and 0)~ r 

if 0)'1 = 0 ) 1 a n d 0 ) ~ = 0 ) 2  

otherwise 

(2.1) 

where C(0)1 o 0)2) is the number of splittings of 0)~ o 0)2 in which one of the 
pieces is non-self-avoiding. It is immediate that Pe is a symmetric matrix, 
i.e., it satisfies detailed balance with respect to the equal-weight distribution 
n. It also happens that Pe is positive-semidefinite. To see this, note first that 
Pe leaves invariant each subspace 

~'-Co _. {((D1, (A)2)~ ~'-Ntot : (DI o (D2 = (D } (2.2) 

where 0) is a not-necessarily-self-avoiding walk of Nto , steps. The car- 
dinality of ~--o~ is Nto t + 1 - C(0)), and on this subspace Pb is given by 

1 c(0)) 
Pb ) 9--0~ - - E - t  - -  I (2.3) 

Ntot + 1 Nto t + 1 

where E is the matrix with all entries 1, and I is the identity matrix. Thus, 
the eigenvalues of Pb ~f f~  are 1 (multiplicity 1) and C(0))/(Ntot+l ) 
[ m u l t i p l i c i t y  Nto t - C ( 0 ) ) ] .  Since C(0))>~ 0, this completes the proof. 

Remarks. 1. For a given pair (0)1,0'32) (~ ~ X ~N2 , a cutting point 
N't is allowed if and only if both of the subwalks (0)~o0)2) ~ and 
(0")1 o 0.)2) u['Nt~ are self-avoiding. Therefore, the set of allowed cutting points 
N '  1 is an interval [Nl ,min( (D1 o0)2)  , NI . . . .  ((2) 1 ~ 0)2)], where Nl,min(0) 1 ~ 
N1 - 10)11 ~< N1 . . . .  (0)1 ~ 0)2)' It follows that 

C(0)1 ~ 0)2) = Ntot - IN1 . . . .  (0) 1 ~ 0)2) - -  Nl,min((O 1 ~ 0)2) ] (2.4) 

2. A slight variant on this algorithm is to restrict the cutting point to 
lie in some specified interval [N~in, Ntot-Nmi,-1, chosen with uniform 
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probability. This algorithm simulates the equal-weight ensemble on the 
configuration space 

Nto t -- Nmi n 

N1 = N'in 

It is convenient to introduce also, for purposes of comparison, a 
modified join-and-cut move in which one insists that the concatenated walk 
col ~ o02 itself be self-avoiding: 

(b') We concatenate the two walks col and co2- If the concatenated 
walk col oco2 is self-avoiding, then we cut it at a random posi- 
tion, creating two new walks co'i and co~. Otherwise the move is 
rejected and we stay with co~ and co2. 

The corresponding transition matrix P ;  is given by 

P;((co,,  co:) --, (co;, co;)) 

1 
if 

N t o  t + 1 

= 1 

0 

col  o c o ;  = ( 0 1  o(/) 2 and 
col ~ (~ is self-avoiding 

if col =e) l  and co; =co2 and (2.5) 
coJ ~ co2 is non-self-avoiding 

otherwise 

Clearly P ;  is symmetric. Its off-diagonal elements are less than or equal to 
those of Pb, SO by a general comparison theorem (ref. 5, Theorem A.3) we 
have 

Pb ~< P;  (2.6) 

in quadratic-form sense. In particular, P ;  is positive-semidefinite. Indeed, 
P ;  leaves invariant each subspace j-~o, and on this subspace it is given by 

3--o, = f ~  E if co is self-avoiding 
P;  

if co is non-self-avoiding 

= { f b  [" Y~ if co is self-avoiding (2.7) 
if co is non-self-avoiding 

We emphasize that the algorithm using rule (b') is inferior to the algo- 
rithm using (b). This is obvious intuitively, since fewer useful moves are 
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being made; and subject to certain conditions on P~ it will be proven 
rigorously at the end of Section 2.2. We therefore do not advocate using 
rule (b') in practice. Its only role is to help simplify the analysis, as will be 
seen in Section 2.3. 

2.2. S o m e  Useful  Abs t rac t  Nonsense 

The transition matrices P--P~Pb and P ' =  P~P'b are in general non- 
symmetric, which somewhat complicates the mathematical analysis. 
Suppose, however, that Pa is symmetric (i.e., satisfies detailed balance) and 
positive-semidefinite (so that 0 ~< P,  ~< I in quadratic-form sense). Then it 
has a unique symmetric positive-semidefinite square root p~/2 (which can 
be constructed, e.g., by diagonalizing P,); this square root satisfies 
0~<pl/2<f_~ -.~J. The matrix Pla/2 leaves invariant each subspace 5%, X SeN2 
(because Pa does); and the constant function 1 is an eigenvector of P~a/2 
with eigenvalue 1. It should be emphasized that the matrix p~/2 is not in 
general a transition probability matrix, because its matrix elements may 
not all be nonnegative. 6 (In important speciai cases, p~j2 may be a 
transition matrix: for example, if P , =  Q2, where Q~ is a symmetric, 
positive-semidefinite transition matrix and n is even, then clearly p~/2 _ 0~/2 a - - ~ . - - a  

is a transition matrix.) Nevertheless, p~/2 can be used in the mathematical 
analysis even if a direct probabilistic interpretation is lacking. To 
demonstrate this, we introduce the symmetric matrices p~/2p ol/2 and - -a  - - b - - a  

p1/2p, pl/2 We claim that: 

(i) The eigenvalues of P, Pb are identical to those of p1/2p p~/2 
a b a ' 

counting multiplicity; in particular, they are real and lie in the 
interval [0, 1 ]. 

(ii) For any observable A(co~, co2) depending only on the lengths of 
the two walks [i.e., A(col, co2)=f(Ic%[) ], the autocorrelation 
function 

CAA(t) = (A, (PoPb)' A) - (A, 1)(1, A) (2.8) 

6 Example: Let 

with 1/3 ~< a ~< 2/3. Then 

~ 1/3 2/3-:c) 
P~ = 1/3 1/3 1 ) 

\2/3-~ 1/3 /3 

c~' 1/'3 2/3-e'~ 

\ 2 /3 - r  1/3 

with e'=1/3+[(3cr m. For e>5/9 this implies e'>2/3, so that p~/2 has some 
negative entries. 
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under the dynamics P~Pb is equal to the "autocorrelation 
function" 

( s y m )  CAn (t)=(A, t9l/2Pt-, b-,Pl/2WA)-(A, 1)(I, A (2.9) 

under the "dynamics" o~/2D D1/2 * a ~ b l a  �9 

Statement (i) follows from Lemma 2.1 below. It implies, among other 
things, that the exponential autocorrelation time %xp of the dynamics P, Pb 
can be determined by studying the eigenvalues of the symmetric matrix 
p 1 / 2 p  / : ) i / 2  

a - - b  - - a  " 

Statement (ii) is an immediate consequence of the fact that P ,  leaves 
= P~ A = A for observables invariant each subspace 5PN, X 5~ SO that P~A 1/2 

A depending only on N~. It implies that for such observables we can learn 
everything about the dynamics--in particular, the integrated autocorrela- 
tion time ri,t,A by working with the symmetric matrix P~a/ZPhPo~/2. 

Of course, analogous statements hold with Pb replaced by P;,. 

k e m m a  2.1. Let P and Q be n x n complex matrices, with P 
Hermitian and positive-semidefinite. Then the matrices PQ and pl/2Qpl/2 
have identical spectra, including multiplicity. 

Proof. Let e > 0; then the matrix P +  el is Hermitian and positive- 
definite, hence has a unique Hermitian positive-definite square root. Now 
(P + eI)Q is similar to (P + gI) ~/2 Q(P + el) ~/2, and so has identical spec- 
trum (including multiplicity). Letting e .~ 0, we have (P + eI)Q --+ PQ and 
( p  + gi)1/2 Q(p + ei)  1/2 _+ p1/2Qp1/2. Since the eigenvalues of a finite matrix 
are continuous functions of the matrix elements (this can be seen, e.g., from 
the characteristic polynomial), this proves the lemma. | 

Re ma r ks .  1. Although PQ and p1/2Qp1/2 have identical spectra, 
they need not have the same Jordan block structure, not even if Q is 
Hermitian: consider, for example, 

P=(10 00) and Q = ( ~  10) 

2. The analogue of Lemma 2.1 for bounded operators on a Hilbert 
space is much more subtle: the proof given here is valid only subject to 
restrictive hypotheses (e.g., P or Q is compact), and we do not know under 
what conditions the result is true. The trouble is that the spectrum is 
not in general a continuous function of the operator, even in the norm 
topology. For examples and discussion, see ref. 23, Problems 102-106. 
Nevertheless, we can prove that PQ and p1/2Qpl/2 have identical spectra 
(not necessarily with identical multiplicity) except possibly for the point O. 



74 Caraccio lo e t  al. 

This is a special case of the analogous result for operators AB and BA 
(ref. 23, Problem 76): just take A = p~/2 and B = pl/zQ. In particular, this 
shows that we can express the exponential autocorrelation time Zexp(PaPb) 
for a Markov chain on an infinite state space in terms of the spectral radius 
of the self-adjoint operator PI~/2PbP1/2 ~ 1 • 

Now we can prove that the algorithm using rule (b') is inferior to the 
algorithm using (b), under the condition that Po is symmetric and positive- 

.<  ' semidefinite. Indeed, from Pb--~ Pb it follows that 

p1/2~ 1/2 pl/2o, pl/2 (2.10) 

From this quadratic-form inequality, it follows by the rain-max theorem (24) 
that the eigenvalues of pVZp p1/2 a - b  a are less than or equal to the 
corresponding eigenvalues of pl/2o, pl/2. combined with Lemma 2.1, this l a  a b ' *  a ' 

proves that 
"Cexp(Panb) ~ "~exp(PaP'b) (2.1 1 ) 

On the other hand, (2.10) also implies that the integrated autocorrelation 
time for any observable A under the "dynamics" P~a/2PbPla/2 is less than or 
equal to that under .~/2p, o~/2 (ref. 5, Theorem A.2); combined with ~ a  "L b a a  

statement (ii) above, this proves that 

~int, A(P~Pb) ~< ~i~t.A(P~P'b) (2.12) 

for all observables A depending only on the lengths of the walks. 

2.3. Idealized Algorithm 

In "hybrid" algorithms involving two radically different types of 
elementary moves--such as our steps (a) and (b)--physical insight can 
often be gained by studying first an idealized version of the algorithm in 
which one of the two moves is taken to be a "perfect" move of its type. 
(For previous examples of this method, see refs. 21 and 22.) Here we define 
an idealized version of the join-and-cut algorithm, for which we can prove 
a rigorous upper bound on the autocorrelation times Zexp and ~int.A. In this 
idealized algorithm, we use in step (a) a routine that produces a perfect 
random sample from the space of SAWs with given N1, N2 : that is, the two 
new walks are independent of the previous pair and of each other. Mathe- 
matically, the idealized algorithm is defined by 

i     ola.d      otherwise 
(2,13) 
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(id) 2 _ It should be noted that p(i~) is symmetric and idempotent, i.e., Pa - 
p(a id) = (id) T P~ . In particular, it is positive-semidefinite, with eigenvalues 0 
and l; and we have p~d;.'2=p~idl. Lemma 2.1 then implies that the eigen- 
values of the (nonsymmetric) matrix p(id)_ p(id)p - - ~ .  --b are the same as those 
of the symmetric matrix P~id)PbP~idl. 

In our case Pb is symmetric and positive-semidefinite, hence so is 
PI)~)PbP~ 'dl. It follows that the eigenvalues of ~P(id)Pl~--,p(id), call them 21 >~ 
2z>~ ..- ~>2~ (n= IJX,o,I), lie in the interval [0, 1]. The constant function 
1 is an eigenvector corresponding to the eigenvalue 21 = I, and this eigen- 
value is simple (because the algorithm is ergodic). The exponential 
autocorrelation time Ze~ p of the idealized algorithm p(id)= p~dlpb or its 
symmetrization P~id)PbP~i~)is given by 

e x p ( -  1/vexp)= )~2(P(~id'pb) = ).2(P(~id)pbP~ id') (2.14) 

So we need to control the eigenvalues of the symmetric matrix D(id)i~ /:~(id) l a  l b  X a  ' 

Let us remark that a completely analogous analysis holds for the 
modified idealized algorithm P'Oa)=P~d)P'b and its symmetrization 
P~ialp'bP~ia). From (2.6) we deduce 

p( id )p  p/ ia)  p ( i d ) ~ D ,  p(id) (2.15) 
a b ~ a  ~ ~ a  ~ b  a 

in quadratic-form sense. It follows from the rain-max theorem (24~ that each 
eigenvalue of .~D(ia)P--b--~P(~a) is less than or equal to the corresponding eigen- 
value of p(~d~p, jo(id). 

~ a  I b l a  " 

)~k( p~id) p b P~ ~dl) <. )~k( p~id' e'b P~ ~dl) (2.16) 

for 1 <~k<~n. 
Since p~d! provides perfect randomization within each subspace 

heN1X 5PN2 , the dynamics of the Markov chain 1 ap(i~lp~b ~aP(idl is determined 
completely by the behavior of the corresponding aggregated Markov 
chain (25'H) with state space {0, 1 ..... Nto,}, defined by 

P(N1 ~ N'I) 

1 

CNI eNtot NI 
2 2 Pb((O.)l, 092) --+ (C0'1, C0~)) (2.17) 

,hPNI X,~~ ~905,'i X~5~'Ntot-N ] 

(More precisely, the nonzero eigenvalues of p0d)p p(id) - a  --b--, are exactly those of 
/5.) Inserting (2.1), we find that the off-diagonal matrix elements of/5 are 
given by 

F(N1, N] ; Ntot) 
/5(Nt ~ N'~) - for N,=/=N' 1 (2.18) 

(Nto t -+- 1 ) eNl CNtot_ N1 
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where F ( N 1 ,  N] ; Ntot) is the number of not-necessarily-self-avoiding walks 
o) of Nto t steps such that all of the subwalks co ~ mN1.N% C~0,NI, and 
mNI,N,o~ are self-avoiding. Since F(N1, N'l;Ntot) is obviously symmetric 
under N~ ~ N'~, we see that /5 satisfies detailed balance with respect to the 
probability distribution 

CNI CNtot NI 
~(N1) (2.19) 

Z(Nto t )  

which is the aggregated probability distribution corresponding to zt. Unfor- 
tunately, we know very little else about F(NI ,  N];Ntot); but it is in any 
case larger than or equal to Cutot, the number of self-avoiding walks of Nto t 
steps. So let us consider the modified aggregated Markov chain fi' defined 
by 

C Ntot 
P'(NI--,. N '~ ) -  for NI=~ N'  1 (2.20) 

(Nto t q- 1 ) CNI CNtot_ NI 

(This is the aggregated Markov chain corresponding to the modified 
transition matrix o(id)o, D(id) "a  --b--a ") The matrices P and/5 '  both satisfy detailed 
balance for the same distribution ~, and the off-diagonal elements of/5' are 
smaller than or equal to those of P. Hence P ~< P' in the sense of quadratic 
forms, and each eigenvalue of/5 is less than or equal to the corresponding 
eigenvalue of/5,. In particular, 22(/5) ~< ) ~ 2 ( P t ) .  

So it suffices to study the eigenvalues of the matrix/5'. Now 

P~ = (1 - n d i )  6ij + di (2.21) 

where n ~- Nto t + 1 and di - CNtot/(rlCiCNtot i)" Let D be the diagonal matrix 
D o = d~6u; then 

( D -1/2p'D1/2)o. = (1 -- nd~) (~ ij + d ]/2 d 1/2 

-= R~j + S~j (2.22) 

Now R is a symmetric matrix with eigenvalues 1-nd~ (i=0,..., Ntot) , 
and S is a symmetric positive-semidefinite matrix of rank 1. By Weyl's 
interlacing theorem (ref. 26, Theorem3.6.3), the eigenvalues of the 
symmetric matrix D-1/2p'DI/2 interlace those of R, so that 

)~k(R) <~ )~k(P') = 2~,(D 1/2fi'D1/2) <~ ).k ~(R) (2.23) 

for 2 <~ k ~< n. In particular, 

max' (1-ndi)<~22(P')<~ max 
0 ~-,~ i <~. Ntot 0 ~  i ~  Ntot 

(1 - ndi) (2.24) 
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where max '  denotes second-largest. N o w  it follows from the assumed 
behavior  (1.5) that  7 qCuto~ ~ is max imum at or  near i =  Nto~/2, and that 

Hence 

( max '  CiCNtot_i)/CNtot , ( max CiCNtot i)/CN~o~ ~ N{~t 1 (2.25) 
0 ~ i ~ Nto t 0 ~ i ~ Ntot 

const  
- - '  "~ (2.26) ;~(P) ~ ; ~ ( e  ) ~ 1 N ~-~ 

In summary,  we have proven [-subject to the assumption (1.5)] that  

rexp ~ N~-  ~ for the modified idealized algori thm (2.27a) 

rex p < N ~- ~ for the original idealized algori thm (2.27b) 

(We expect that  %xp ~ Nv-~ also for the original idealized algorithm, but 
we do not  have a r igorous proof.) The general theory of reversible M a r k o v  
chains (3'2~ then implies that 

rint,  A .~ NT 1 (2.28) 

for any observable A, for both the modified and original idealized algo- 
rithms. [We  expect that  "t'int, a ~ N 7 -  1 for "reasonable" observables A, such 
as functions f ( N ~ )  that  are even under the symmetry  N~ -+ Nto t - N 1 ; but 
we do not  have a r igorous proof . ]  

R e m a r k .  The quant i ty  f ,  -= nd~, which appears in (2.24), is the mean 
acceptance fraction of  modified join-and-cut  moves starting from N~ = i. 
The mean acceptance fraction, averaging over all N~, is 

Ntot CiCNto  t -  i 

i = 0  

It follows from (1.5) that 

f i n N  -(~-1) if 

f ~ N  (7--1) 

( N t o  t -I- 1 ) C N m  t 

Z(Ntot) 

i, N t o  t - -  i ~ N t o  t 

(2.29) 

The upshot  of the foregoing proof  is that  one successful idealized join-and- 
cut move is sufficient to generate an "effectively independent"  configurat ion 
(co'1, co~)--hence ~xp ~ 1If  

7 It is an interesting and (as far as we know) open problem to prove rigorously that CiCN, o,-i 
takes its maximum at i= [Ntot/2 ]. Indeed, proving this for each even Ntot is equivalent to 
proving that log cu is a concave function of N--an assertion which appears to be true but 
very difficult to prove. We thank Neal Madras for a discussion of this point. 

(2.30a) 

(2.30b) 



78 Caracciolo e t  al. 

2.4. Review of Pivot Algorithm 

In the practical version of the join-and-cut algorithm, we will use pivot 
moves for step (a). We begin, therefore, by reviewing the known facts (3) on 
the behavior of the pivot algorithm. 

The pivot algorithm for N-step SAWs (starting at the origin and 
ending anywhere) is defined as follows: Choose randomly, with uniform 
probability, an integer k ~ {0, 1,..., N -  1}.8 Choose randomly an element 
g of the lattice symmetry group (i.e., lattice rotations and reflections). 9 
Propose a pivot move co ~ co' defined by 

, ~coi for O<~i<~k 
~ = ~ (Dk q- g(coi  - -  (-Ok) for k + 1 ~ i ~< N 

(2.31) 

where i labels sites along the walk, The proposed move is accepted if co' is 
self-avoiding; otherwise, it is rejected and we stay with co. 

Remark. For certain (but not all) choices of the transition 
probabilities Prob(g), the transition matrix Pa of the pivot algorithm is 
positive-semidefinite. This occurs, for example, if Prob(g) is uniform on the 
lattice symmetry group (including the identity element); the proof is similar 
to the one at (2.1)-(2.3). 

In ref. 3 it is argued heuristically, and confirmed numerically, that the 
acceptance fraction f(pivot)  and autocorrelation times zint, A(pivot) and 
Zexp(pivot) behave as 

f(pivot)  ~ N -p (2.32) 

N p for global observables A 
Zint'A(piv~ ~ N 1 +P for local observables A (2.33 ) 

Zexp(pivot) ~ N 1 +P (2.34) 

where p.~0.19 in dimension d = 2 ,  (3) and p~0.11  in d = 3 .  (27) Here a 
"global" observable is one that receives contributions equally from all steps 
of the walk; examples are the end-to-end distance and the radius of 
gyration. A "local" observable is one that depends primarily on a very 
small part of the walk; an example is the angle between the 17th and 18th 

In one variant of the pivot algorithm (ref. 3, p. 117), the starting point of the walk (k = 0) 
is excluded as a possible pivot point, since pivoting there corresponds simply to an overall 
rotation or reflection of the walk. This variant is fine for studying a single walk, but it is not 
appropriate for applications involving pairs of walks, as is the case here. 

9 The probability distribution must satisfy P r o b ( g ) = P r o b ( g  -1) in order to satisfy detailed 
balance; and "enough" of the probabilities must be nonzero so as to make the algorithm 
ergodic. See refs. 3 and 7 for details. 
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steps of the walk. The heuristic reasoning behind (2.33) is the following: 
The pivot moves are very radical; after a few successful pivots, the global 
conformation of the walk should have reached an "essentially new" state. 
So we expect Zint, A(pivot)~ 1 / f (p ivo t )~  N p for global observables A. On 
the other hand, for a local observable to change, it is necessary to have a 
successful pivot in a small portion of the walk; this requires a time 
~N/f(pivot), ,~N I+p. More generally, for observables A that depend 
primarily on ,~M steps of the walk ( M ~ N ) ,  we expect rin~,A(pivot)~ 
N I +P/M. 

2.5. Practical Algorithm 

Now we consider the practical join-and-cut algorithm in which step (a) 
consists of npiv pivot-algorithm attempts on each of the walks o l ,  o92. Our 
treatment will be heuristic rather than rigorous. 

It is reasonable to conjecture that the autocorrelation time for any 
observable A follows a scaling law 

rA SA 
Z'im, A ~ N t o t F A ( n p i v / N t o t )  (2.35) 

a s  N t o  t ~ 00, for some exponents r A, sA and some scaling function F~. Our 
greatest interest is in observables A that are functions only of the lengths 
of the two walks and are invariant under N 1 ~--~ N 2 :  that is, A = f ( N 1 )  for 
some f satisfying f(N1 ) = f(Ntot - N~). 

To extract the exponents ra, SA and the asymptotic properties of the 
scaling function FA, we consider three ways of taking N t o  t to infinity: 

1. First take npiv ---' o% then take N t o  t ~ 0(3. 

2. Take Nto t --, oo with npi, ~ '~ NtoAt . 

3. Take N t o  t --* oO with np~v fixed. 

1. npi v ~ oo followed by N t o  t ~ o(3. AS npi v ~ 0% the practical 
algorithm approaches the idealized algorithm. Indeed, for npi v 

r~xp(pivot, N ~  N t o t ) ~ ) V I ~ '  to t  + p ,  the autocorrelation time of the practical algo- 
rithm should be essentially independent of npi v (with corrections expected 
to be exponentially small in l+p npiv/Nto t ). Combining this fact with the 
scaling Ansatz (2.35) and the conjectured behavior , ( i d ) ~ N ~ - I ,  we ~in t ,  A 

conclude that 
rA = ~  1 (2.36) 

s A ~< 1 + p  (2.37) 
and 

0<FA(OO)~ lira FA(Z)< oO (2.38) 
z ~ o o  

822/67/'1-2-6 
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Waving our hands a little bit more, we can argue that FA(Z ) should 
approach its limiting value FA(oo) at the rate 

1 
FA(Z)--FA(oO)~z,~I as z--, oo (2.39) 

Indeed, in the pivot algorithm for an ordinary random walk, the 
autocorrelation functions for global observables decay like 1/t in the range 
l ~ t ~ % x p ( p i v o t ) ~ N  (ref. 3, Section3.3); and we expect a similar 
behavior for a self-avoiding walk, i.e., a decay like 1/t ~1 for NP~ t 
rexp(pivot) ~ N ~ +P. Assuming that the behavior of the join-and-cut moves 
depends on a global observable (see below for further discussion), this 
suggests that the deviations from the idealized join-and-cut algorithm 
should scale like 1/np~ilv for NtPot ,~ F/pi v <.~<~ lv~'rltot +p' Provided that sa > p [as we 
argue below, see (2.43)-1, this implies (2.39). 

In Section 5.1 we shall test numerically the predictions (2.36)-(2.39). 

SA - -  SA 2. npi v ~ Nto t. If z = nviv/Nto t is fixed (0 < z < ~ ) ,  then we have 

~'int, A__ FA(z) 
some finite number (2.40) 

T(id) i.,,~ FA(~176 

Thus, determining the exponent SA amounts to answering the question: 
Roughly how many pivot moves do we have to perform so that the practi- 
cal algorithm will be only a finite factor worse than the idealized algo- 
rithm? It is tempting to guess that the answer is: a few pivot-algorithm 
autocorrelation times. But this raises the question: which autocorrelation 
time? Is it "Cint, B(pivot), and if so, for which observable B(0)1, co2)? One 
might guess that the relevant observables B are those that are somehow 
related to the behavior of the join-and-cut move, i.e., which are functions 
of Nl,min(0) 1 o 0)2) and N1 . . . .  (0)1 ~ (o2). For example, one might consider 

J(0)1, c0D = Prob(a join-and-cut move on co 1, 0)2 will be successful) 

= N1 . . . .  (0 )  1 o 0 ) 2 )  - -  N l , m i n ( 0 ) l  o O92) -I- 1 

Nto t + 1 (2.41) 

o r  

~,4i(co 1, coD=- (f(Iog'11))~,,o~ 

1 Nl'max(C~ ~ c~ 

f(N'l) 
Nto t + 1 N i  = Nl ,min(Ogl  o ~}2) 

+ [1 - J(0)1, 0)2)] f(I0)ll)  

(2.42) 
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and similar observables. (Here ( . ) ~ , ~  denotes a condit ional  expectation 
given c0l, c02.) It is far f rom obvious to us how rmt,B(pivot) for these 
observables scales. These observables seem to be somewhere between 
"global" and "local": they depend on the entire walks 00~ and 092, but 
depend most  strongly on the parts of o) 1 and ~0 2 near the joining point. ~~ 
So we would guess that 

p < sA < 1 + p (2.43) 

Unfor tunate ly  this does not  constrain s A terribly closely. 
Waving our  hands a little bit more, we can argue that these 

observables depend primarily on the parts of  co~ and ~o 2 in an interval of 
width ~M~-,  Nt2ot ~ near the joining point:  the idea is that  if a join-and-cut  
move is to fail ,  then this failure will be detected at an average distance of 
order Nt2ot ~ away from the joining point  (see Section 3.1 below). Then the 
heuristic argument  sketched at the end of Section 2.4 suggests that  

" l + p  p+7--1 
vmt, B ( p l v o t ) ~ N t o  t / M ~ N t o  t . Hence we predict ( though not  with 
great confidence) that 

SA = p + 7 -- 1 (2.44) 

In Section 5.1 we shall estimate numerically SA (and the corresponding 
scaling function FA) by fitting to the scaling form (2.35). 

3. npi v f ixed.  If  

then 

F A ( z ) ~ z  - ~  as z ~ 0  (2.45) 

Zint, A ~ N~o~t- N[o ~+ -AsA (2.46) 

as N t o t ~  with npi~ fixed ( > 0 ) .  In Section5.1 we shall estimate the 
exponent  qA =- rA + aAsA by fitting to (2.46), and shall also estimate aA by 
compar ing  the estimated scaling function FA to (2.45). 

R e m a r k .  It is worth remarking that the autocorrela t ion function 
at time 1 of any observable f ( N  1) is the same in the practical algori thm as 

10 Indeed, if (/)1, (/~1 ~ '~N I and (/)2, ('t~2 ~ N  2 are such that the subwalks (o~1 ~ and 
(051oa52) k,u~ are equal and non-self-avoiding (for some k<~Ni), then Nl,min(co 1oo2) = 
N~,mi~(o51oo52)~>k irrespective of the behavior of the first k steps of ~ol and 052. An 
analogous statement holds true regarding the subwalks [N~, l] and the resulting values of 
Nl,max.  
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in the idealized algorithm. Indeed, for any observable f depending only on 
N1, we have P , f = f ,  and hence 

Cff(1)  = ( f ,  P a P b U ) -  ( f ,  1)(1, f) 

= (f, P b f ) -  (f, 1)(1, f )  (2.47) 

which is independent of the particular choice of updating Pa" Of course, 
this identity does not persist at times t ~> 2, because PbPaf= P b f  is not a 
function of N 1 alone. 

3. DATA STRUCTURES A N D  C O M P U T A T I O N A L  COMPLEXITY  

In this section we discuss the data structures needed for implementing 
the pivot and join-and-cut moves, and the computational complexity of the 
resulting algorithm. 

3.1. Basic M e t h o d  

The implementation of the pivot algorithm is discussed in ref. 3, 
Section 3.4; let us review it briefly. For checking self-avoidance we use a 
hash table with linear probing(28); each hash-table query, insertion or 
deletion takes a mean time of order 1. To test whether a proposed new 
walk co' is self-avoiding, we insert the proposed points co; into an initially 
empty hash table, checking for intersections. Since the most probable inter- 
sections are those near the pivot point, we insert the points co; into the 
hash table starting from the pivot point and working outward (stopping as 
soon as an intersection is detected): the mean work for a failed pivot move 
is then argued to scale as 

E(work I failure) = N 1 -P (3.1) 

where p is the acceptance-fraction exponent defined in (2.32). The work for 
a successful pivot move is of course of order N. The mean work per pivot 
move is thus 

E(work) ~ Prob(success) E(work [ success) + Prob(failure) E(work [ failure) 

~ N  p . N +  1 .N  I-p 

~ N 1-p (3.2) 

This is significantly smaller than the behavior E(work)~  N of the naive 
algorithm in which the points co; are inserted in no special order. Finally, 
the hash table is cleared after each use; to facilitate this, we keep a linear 
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list of the occupied hash-table entries. Obviously the work for clearing the 
hash table scales in the same way as the work for creating it. 

Next we consider the join-and-cut moves. Suppose first that we are 
given the walks ~o 1 and co 2 in the form of linear lists, and that we are given 
the proposed cutting point N'I. How do we test co' I and ~o~ for self- 
avoidance? Note first that one of the two walks will decrease in length, and 
this walk will automatically be self-avoiding. Therefore we need only check 
self-avoidance of the other walk (the one that grows); this is done exactly 
as in the pivot algorithm, working outward from the joining point (and of 
course stopping as soon as an intersection is detected). The work required 
for this computation is therefore proportional to the distance from the 
joining point to the first intersection. Let us estimate the mean work. 

We must attach a subwalk of length M-=-rN'~ - N I [  to a walk of length 
N =  N1 or N2. (Typically M and N are both of order Ntot.) This subwalk 
is, by definition, the first (or last) M steps of a SAW of length Nto t - -  N ;  but 
it is a reasonable approximation to pretend that it is simply a random 
M-step SAW. 1~ [This same approximation was used in ref. 3, Section 3.4 in 
deriving (3.1).] With this approximation, the acceptance fraction (for fixed 
M, N) is 

fM, N ~CN+M (3.3) 
CNCM 

where c u is the number of SAWs of length N. From the scaling Ansatz 
(1.5), we find 

fM.u~min(M, N) -(~ ') (3.4) 

To find out where an intersection first occurs, we apply this same 
approximation also to subwalks of the two walks. That is, the probability 
that i steps of each of the walks can be joined without finding an inter- 
section is approximately 

Z c2~ i_(>. ,) (3.5) 
, i ~  C~ 

for 1 ~< i ~< min(M, N), and 

fmin(M,N),i ~" Cmin(M'N) + i ~ min(M, N) -(7 - 1) (3.6) 
Crnin(M, N) C i 

for rain(M, N) < i ~< max(M, N). 

~ Note that  the probability distribution of the first M steps of a SAW of length Nto t - N is 
not the same as the equal-weight distribution on M-step SAWs. In the former distribution, 
each M-step SAW gets weight proportional to the number  of ways it can be extended to 
an (Nto t - N)-step SAW; and these weights are not equal. (Indeed, some M-step SAWs have 
zero weight, such as those ending in culs-de-sac.) 
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Let us now define the "work"  to be k if an intersection is found at step 
k, and to be max(M,  N) + 1 if no intersection is found at all (i.e., if the 
jo in-and-cut  move  is successful). 12 Tha t  is, 

P r o b ( w o r k  > k) = P r o b ( n o  intersection found up to step k) 

~fk, k for 1 ~< k ~ min(M,  N) (3.7) 

(fmin(M,N),k for min(M,  N) < k <~ max(M,  N) 

Then the mean  work  expended in failed join-and-cut a t tempts  is 

E(work  in failures) 

m a x ( M , N )  

= ~ j P r o b ( w o r k  = j )  
j = l  

m a x ( M , N )  

= ~ e r o b ( w o r k  > k) 
k = 0  

min(M,  N) max(M,  N) 

~ k-(~ 1)+ ~ m i n ( i , N ) - ( ~  1) 
k -- 1 k = rain(M, N) + 1 

m i n ( i ,  N)  2-~ + [ m a x ( M ,  N ) -  min(M,  N ) ]  min(M,  N) 1 7 

~ N t ~ o t  ~ (3.8) 

(Here  we take for granted  that  7 < 2.) Since the probabi l i ty  of failure is 
O ( l )  as Nto t ~ oo, the mean  work  conditional on failure is 

E(work  ] failure) ~ Nt2o~ v (3.9) 

a successful jo in-and-cut  move  requires a work  On the other  hand,  
max(M, N) + 1, so 

E(work  I success) ~ Nto t (3.10) 

Thus,  the mean  work  per  jo in-and-cut  move  is 

E (work )  ~ Prob(success)  E (work  I success) + Prob(fai lure)  E (work  I failure) 

Nto~, - 1). Ntot + 1 �9 Nt2ot y 

~ Nt2ot ~ (3.11) 

12 This definition is taken for simplicity; it differs from the number of hash-table insertions by 
a factor between 1 and 2. Such a bounded factor is of course irrelevant to our estimate of 
the critical exponent. 
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Note that successes and failures make contributions of the same order to 
the total work. (The reader familiar with ref. 3, Section 3.4, will note that 
this analysis is virtually identical to the corresponding analysis for the 
pivot algorithm, with p replaced by 7 - 1.) 

Combining (3.2) and (3.11), we find that the mean work for one itera- 
tion of the complete practical algorithm--np~ pivot attempts on each walk, 
followed by one join-and-cut attempt--is 

E(total work) = 2 n p i  v E(pivot work) + E(join-and-cut work) 

npiv N~ot p + Nt2ot ~ (3.12) 

Now empirically we have p ~< 7 - 1, with strict inequality in all dimensions 
d <  4. (3,27) Therefore, the CPU time of the complete join-and-cut algorithm 
is dominated by the pivot moves, even if n p i  v = 1. That is, 

E(total work) ,-~ nvivNtlot p (3.13) 

3.2. Improved M e t h o d  

The process of checking a join-and-cut move for self-avoidance can be 
speeded up if we happen to have available an up-to-date hash table for the 
walk that is proposed to grow in length. Then we can simply insert into 
this.hash table the points of the M-step subwalk, again working outward 
from the joining point. If no intersection is detected, then the join-and-cut 
move is successful, and the hash table remains up-to-date. If an intersection 
is detected, then the join-and-cut move is unsuccessful, and we restore the 
hash table to its original condition by deleting the temporarily inserted 
entries (of which we have kept a linear list for this purpose). This refine- 
ment of the algorithm does not change the scaling behavior of the com- 
putational complexity, but it does improve the overall constant. 

The combined pivot and join-and-cut algorithm is therefore implemen- 
ted as follows: 

1. For each walk we maintain two hash tables: at any given time one 
is "active" and the other is "scratch" (a flag keeps track of which is which). 
With each hash table we also maintain a linear list of its entries, in the 
order they were inserted; this facilitates clearing the table. A "scratch" hash 
table is empty except when it is in use. An "active" hash table can be in 
either of two states, "up-to-date" or "blank," again indicated by a flag. 
A "blank" hash table is empty. 

2. The pivot subroutine uses the "scratch" hash table to carry out the 
self-avoidance check. If the pivot move is successful, then the active-scratch 
flag is flipped, and the new "active" hash table is labeled "up-to-date." If 
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the pivot move is unsuccessful, nothing is done. In either case, the (new) 
"scratch" hash table is cleared. 

3. The join-and-cut subroutine first checks whether the "active" hash 
table for the walk that is proposed to grow in length is "up-to-date" or not. 

3a. If the "active" hash table is "up-to-date," then the points of the 
M-step subwalk are inserted into this hash table. If an intersection is 
detected, then the join-and-cut move is unsuccessful, and we restore the 
hash table to its original "up-to-date" condition by deleting the temporarily 
inserted entries. If no intersection is detected, then the join-and-cut move 
is successful, and the hash table remains "up-to-date"; but the "active" hash 
table for the other walk has now become incorrect, so it is cleared and 
declared "blank." 

3b. If the "active" hash table is "blank," then the points of both the 
M-step subwalk and the N-step walk are inserted into this hash table, as 
discussed initially (working outward from the joining point). If an inter- 
section is detected, then the join-and-cut move is unsuccessful, and we 
restore the hash table to its original "blank" condition by clearing it. If no 
intersection is detected, then the join-and-cut move is successful, and this 
hash table is now "up-to-date"; but the "active" hash table for the other 
walk is now incorrect, so it is cleared and declared "blank." 

Thus, the "active" hash table for a given walk (~o 1 or c%) becomes 
"up-to-date" each time that walk undergoes a successful pivot move; it 
becomes "blank" each time that walk decreases in length in a successful 
join-and-cut move. 

It is interesting to estimate the probability that in step 3 the "active" 
hash table will be found to be "blank." This happens whenever the most 
recent successful join-and-cut move in which the walk in question 
decreased in length has been followed by an uninterrupted succession 
of pivot failures. Under the approximation that all these events are 
independent, we get 

Prob("blank") = ,_, 1 -  (1 - fpivot) np~vm 
m ~ l  

�89 l - -  fp ivot )  npi" 

- 1 - ( 1  - �89 - f , , , v o t )  "pi  

fjoin (3 .14 )  
max[fjoin, 1 - (1 - fpivot) "r ] 

Since fjo~n ~ Nt;o~ ~- 1~ while fpi,,ot ~ Ntot p with (empirically) p ~< 7 - 1, we 
have 

Prob("blank") ~ N ~  ~- 1 p) (3.15) 
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for any fixed npi  v ) 1 .  In particular, in dimension d < 4  we have (empiri- 
cally) p < 7 -  1, so as Ntot--* 0% the hash table is nearly certain to be 
"up-to-date." 

The algorithm described in this subsection is the one that we have 
implemented. 

4. S T A T I S T I C A L  M E T H O D S  

In this section we show how the critical exponent 7 can be estimated 
from the Monte Carlo data produced by the join-and-cut algorithm. The 
relevant statistical method is maximum-likelihood estimation, (19) which is 
well known to be an optimal statistical method (in the large-sample limit) 
for parametric-estimation problems. Our use of maximum-likelihood 
estimation parallels closely that of ref. 9. 

4.1. Basic M e t h o d  

The join-and-cut algorithm produces a (correlated) sequence of pairs 
(col, co2)E Y-N~o~ coming from the equal-weight probability distribution (1.3). 
In particular, the random variable N1-=-Io~lr has the distribution 

C N  1 C N t o  t - -  N 1 

if(N,) (0 ~< Ul ~< Ntot) (4.1) 
Z(Nto,) 

where Z(Ntot) is defined in (1.4). From the observed statistics of N1 we can 
make inferences about the unknown constants {CN}, and in particular 
about the critical exponent y defined in (1.5). Of course, in a strict sense 
this is impossible, since (1.5) is an asymptotic statement valid as N-+ 0% 
while a Monte Carlo experiment concerns only a finite range of N. Thus, 
it is necessary to adopt additional assumptions about the behavior of the 
{CN} if we are to proceed further. We begin by making the simplifying 
assumption that the relation 

C N -~- k t N N  ~' - la o (4.2) 

is exact whenever N is greater than or equal to some cutoff value Nmi~ 
(which we can choose later); here ~t, ~, and ao are unknown constants. Of 
course, this assumption is manifestly false: (4.2) is only an approximation 
which gets better and better as N gets large. Thus, our estimate of 7 will 
be afflicted with a systematic error arising from corrections to (4.2); it adds 
to the purely statistical error inherent in any Monte Carlo experiment (and 
which we shall calculate forthwith). We discuss corrections to scaling in 
Section 4.3. 
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So let us assume for now that (4.2) is exact for N~> Nmi n. Then the 
probability distribution of N1, conditional on it being in the range from Nmin 
to Nto t -Nmin, is 

where 

Prob(N11 Nmi~ ~ N 1  ~ N t o t  - -  Nrn in )  - 
[Nl(Nto t_N1)]v  1 

~(Ntot, Nmin, 7) 
(4.3) 

Ntot Nmin 

~ " ( N t o t ,  N m i n ,  Y) = E [ N l ( N t o  t - N 1 ) ]  y - 1  ( 4 . 4 )  
NI = Nmin 

Note that g and a 0 have dropped out of this formula. 
Now suppose that we have a random sample NIl),..., N~ n), which for 

the moment we assume consists of independent data. (We discuss the treat- 
ment of autocorrelated data in Section 4.2.) The likelihood ( -  probability) 
for such a sequence is simply the product of the individual likelihoods 
(4.3): 

likelihood = IV[ [N]i)(Nt~ N~i))]7-1 (4.5) 
l<~ i<~n ~ ( N t o t ,  N m i n ,  '~) 

Nmin ~< N] i) ~ Ntot -- Nmin 

(Here the product is taken only over those i for which Nmin~N]i)<~ 
Ntot -  Nmin ; the other data points are simply discarded.) The maximum- 
likelihood estimate ~ is, by definition, that value of 7 which, for the given 
data N] 1) ..... N{ n), maximizes the likelihood (4.5). Simple calculus shows 
that 9 is determined by the condition 

(X}~ = <X}obs (4.6) 

where we have defined the random variable 

X =- log [Nl(Ntot -  N1 )] (4.7) 

and the theoretical and observed mean values 

{~ Ntot Nmin rt N w N t~f __N1)']~ l} 
.(-~ N1 = Nmin J \  1}L 11,~* tot 

( f ( N , ) ) e  =-- rNtot Um~n[Nl(ntot__N,) ], 1 (4.8) 
N1 = Nmin 

( f (N,) )obs  --= {Y~Nmin<~N]i)<~Nt~ (4.9) 
1 Z~Nrnin ~ N~ i)" ~ Ntot- Nmin 
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Equation (4.6) is easily solved numerically for i. By the general theory of 
maximum-likelihood estimation, (19'29'3~ the probability distribution of ~ is 
asymptotically Gaussian as the sample size n tends to infinity, with mean 

(1) 
( 7 ) ~ = 7 +  O ~7 (4.10) 

and variance 

1 o ( , )  
var(~)---- (~; 9)~ n,(X;X) .e+ 7; ~ (4.11) 

where 

n'= Z 1 (4.12) 
Nmin ~< N~ i) <~ Ntot Nmin 

is the censored sample size. We have here used the notation 

(A; B )  =- ( A B ) -  ( A ) ( B )  (4.13) 

Note that var(~) depends in principle on the unknown "true" value of 7; 
but since this dependence is rather weak, and since ~ will be a fairly close 
estimate of 7 (if n' > 1), it suffices for our purposes to replace 7 by the 
estimated value ~ when attempting to compute error bars. 13 

A very important feature of this method is that the statistical error 
bars can be computed prior to performing the Monte Carlo experiment. Let 
us do so. We have 

Nl;'~;i; 11 NtOt - Nmm i 
( X ; X } 7 =  ~ X'[N,(Ntot -N,)]  "~- /Nl=~Nmin [ N ' ( N t ~  

Ntot Nmin . /Ntot Nmin 

--XNl_~Nmin X[Nl(Ntot-N1)] y l f  Nl~Nmin [N , (N to t -N1) ]  7 1) 2 
(4.14) 

where X has been defined earlier. These sums can easily be evaluated 
numerically. Alternatively, for large Nto t (which is the regime of interest), 

13 More rigorously, one would limit oneself to some interval [y~, Y2] in which the true 7 value 
is assumed to lie, and compute the worst possible error bars subject to that assumption; this 
defines a rigorous confidence interval for 7 subject to the assumption that y e D'l, 72 ]. 
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the sums can be approximated by integrals: letting y = NffNto ~ and Ymin = 
Nmin/Ntot, w e  have 

j'~y~["" dy log2[y(1 - y)]  [y(1 - y)]'~-~ 
<X; X>~ 

dy [y(1 -- y ) y - '  

- [ ~ Y~'~/f'- Ymi~ dy I~ Y) ][Y(1-  Y) ]'~- ') -[y(~ ~f~f~-T (4.15a) 

d 2 I -- Ymin 

= ~y2 log fy~o dy [ y ( 1 -  y) ]  ~-1 (4.158) 

A numerical evaluation of (4.15a) yields the results shown in Table IL 
For example, at 7 =  1.3 and Ymin-~0.10, we have <X; X ) ~ 0 . 0 7 ;  this 
means that var(~)~ 1/0.07n' ~ 14/n', where n' is the number of "effectively 
independent" censored samples. From Table II one can thus estimate the 
sample size needed to achieve a specified accuracy for 7. 

Remark. The integral (4.15b) is an incomplete beta function. When 
Ymin-~ 0 it becomes an ordinary beta function, and 

d 2 

(X; X)~ --- dy-- 5 [2 log F(7 ) -- log r(27)3 (4.16) 

Tablel l .  <X;X)  Asa  Function o f v  ( f r o m l . 0 t o l , 5 )  
and Ymin~-Nrnin/Ntot (from 0,0 to 0.15) 

Ymin y = 1.0 7 = 1.1 ~ = 1.2 7 = 1.3 7 = 1.4 7 = 1.5 

0.0 0.710132 0.574867 0.474144 0.397279 0.337385 0.289868 
0 . 0 1  0.432901 0.386997 0.345751 0.308956 0.276310 0.247457 
0.02 0.327874 0.300873 0.275664 0.252301 0.230781 0.211059 
0.03 0.260792 0.243105 0.226233 0.210248 0.195192 0.181084 
0.04 0.212792 0,200552 0.188710 0.177323 0.166433 0.156069 
0.05 0.176410 0.167646 0.159082 0.150758 0.142708 0.134958 
0.06 0.147836 0.141414 0.135092 0.128897 0.122855 0.116985 
0.07 0.124847 0.120062 0.115324 0.110652 0.106065 0.101578 
0.08 0.106025 0.102414 0.098824 0.095266 0.091755 0.088300 
0.09 0.090410 0.087660 0.084916 0.082187 0.079481 0.076807 
0.10 0.077323 0.075214 0.073103 0.070998 0.068903 0.066825 
0 . 1 1  0.066268 0.064642 0.063010 0.061379 0.059751 0.058132 
0.12 0.056870 0.055610 0.054345 0.053077 0.051810 0.050545 
0.13 0.048839 0.047861 0.046878 0.045890 0.044902 0.043913 
0.14 0.041951 0.041190 0.040424 0.039654 0.038882 0.038109 
0.15 0.036022 0.035430 0.034833 0.034233 0.033630 0.033026 
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Moreover, for 7 = 1  and 7=3/2 ,  the integrals (4.15a) with Y m i n = O  are  
elementary, and we find 

7~ 2 
(X; X)~= ~ = 4 - ~-,,~ 0.710132 (4.17a) 

~2 

<z~; g > 7  = 3/2 = "~ - - -  3 ~ 0 . 2 8 9 8 6 8  ( 4 . 1 7 b )  

Unfortunately, these values are good approximations only if Ymin ~ 
Nmin/Nto t is very small (<0.01),  as can be seen from Table II. 

4.2. Autocorre la ted Data 

In Section 4.1 we have developed the maximum-likelihood theory 
under the simplifying assumption that the sample N~ ~) ..... N~ n) is a sequence 
of independent random variables. But we know that in fact the join-and-cut 
algorithm generates a correlated sequence. How does this autocorrelation 
affect the maximum-likelihood theory? 

It turns o u t  (31 3s) that the maximum-likelihood method is still valid, 
but the variance of ~ is now 

var()7) O ( 1 )  var(,)) - - -  (4.18a) 
<x; + \n 2/ 

2 ,n,X (1) 
- n ,  < X; X>./+ O - ~  (4.18b) 

0 ( i ) : J ' l  if Nmi n ~N~i)~Ntot-Nmin 
(4.20) lo otherwise 

where 0 denotes 

Nto t - Nmin, i.e., 

where <X; X>7 is as before, and the variance of the sample mean X must 
be determined through the appropriate time-series analysis./3'2~ [If  the 
samples were independent, one would have 2Z'int, X = 1, and (4.18) would 
reduce to (4.11).] 

Let us discuss in a bit more detail how we handle the "censoring" 
N m i n ~ N l ~ N t o t - N m i  n in the context of autocorrelated data~ One 
approach is to realize that the censored sample mean )7 .... is simply a ratio 
of two uncensored means: 

n 0 ( i )x ( i )  O X  un . . . .  
2 .. . .  = (l /n) Y~i= 1 - - -  (4.19) 

( l /n )ZT=l  o(i)  - -  0 . . . . . .  

the indicator function of the event Nmin~<N~< 
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We can then use the s tandard formula for the variance of a ratio (which 
is valid in the large-sample limit), 

var = ~ var (4.21) 

with A = OX . . . . . .  and B = 0 . . . . . .  . The latter variance can be estimated by 
the usual time-series analysis (3'2~ applied to the uncensored time series for 
the observable C = - O X / @ X ) -  0 / ( 0 ) ,  or more  precisely 

C (i) = 0 ( i)X(i) /-OX . . . . . .  - 0 (i)/O . . . . . .  (4.22) 

This variance is determined from the autocorrela t ion time zint, c in the 
uncensored time series. 

An alternate approach  is to work directly with the "censored time 
series" ~(1) ..... ~-r defined by 

~'~;) = X ~ )  (4.23) 

where T I < T 2 <  .. .  < T , ,  are the times i for which Nmin~N]i)<~ 
Nto t -  Nmi n. We emphasize that  the { T  j}  are random variables, as is the 
censored sample size n'. The censored time series is a s tat ionary stochastic 
process (and indeed, the underlying censored process on the state space 
"Y-N~ot is a M a r k o v  chain), though of course "time" has a different meaning 
here than it had in the uncensored process. It  is natural,  therefore, to 
analyze this time series by the usual techniques(3'2~ these techniques yield 
an error  bar  on X =  X . . . .  , based on the autocorrela t ion time Zint,3~ in the 
censored time series. 

We thus have two alternate methods for determining the error  bar on 
- -  c e n s  X , so we have to ask: which one is correct? The first method is 
obviously unobjectionable.  The second method,  however, is based on a 
slight cheat, because the sample size n' is a r andom variable and we are 
treating it as if it were a deterministic quantity.  Nevertheless, it turns out  
that  the central limit theorem for Markov  chains can be generalized to the 
case in which the upper  time limit is a random variable that  tends to infinity 
in a suitable sense, and the limiting variance for the sample mean is the 
same (up to the obvious time-rescaling factor ( 0 ) )  whether the upper limit 
is deterministic or  random. 14 We believe that  these facts can be used to 

14 See, for example, ref. 34, Theorem 20.3; ref. 35, Corollary 4.2, Theorem 4.2, and Section 5; 
and ref. 36, Theorem 1 and its proof. For related material, see also ref. 37 and ref. 38, 
Section 7.4, and the references cited there. The important point is that the sequence 
(Tj/j)j~l is a subsequence of the sequence (n/527_ 1 0i),~1; and since the strong law of large 
numbers (=ergodic theorem) for Markov chains guarantees that l i m , ~  Y~=l Oi/n= (0)  
almost surely, it follows that limj~ ~ TJj = 1/(0 ) almost surely. 
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prove the asymptotic (large-sample) equivalence of the two methods. In 
any case, we have tried both methods on our data, and we obtain estimates 
of X that are equal within error bars. 

Let us also mention how to combine data from runs at different values 
of Ntot. The simplest approach is to analyze the data separately for each 
N~ot, and then to construct a weighted average of the resulting estimates ~, 
with weights inversely proportional to the estimated variances var(~) taken 
from (4.18): 

. . . . .  11__ Y;/w/~j (4.24) 
E+w+ 

with w/= 1/var(~/). An equivalent approach (when the individual-run 
sample sizes are all large) is to solve the weighted likelihood equations 

Z w;(X)N,o,,j.~.=o/ ..... ,, = y~ wjJZ? "s (4.25) 
J J 

where the weights w) are taken proportional to the number of "effectively 
independent" censored samples, i.e., 

, nj  (4.26) Wj-- 
~'int, .~, j 

The proof of equivalence is simple: write ~7 . . . . .  n = ~j + ej and expand each 
term on the left-hand side of (4.25) using 

(X)Ntot,j,Nrain,, ~ . . . . .  11 = (X)u,o<,/Vmm,/ ,#+ej(X;X)uto, , j ,Um~., /~/+O(e~) (4.27) 

Now, by definition of ~j, we have 

(X)Ntoi,j,Nrnin,j,~j = ~ j e n s  (4.28) 

for each j. It follows that Z/wj 'ej  = 0, where 

.g' - ~g ( x ;  x )N,  ot.+ ~m,o./~ 

But wj' = const • w;, so this is precisely (4.24). 
We can now pose and solve an optimization problem: For fixed Nmin,  

what is the optimal choice of Nto  t if the CPU time per "independent" 
k 9 [Combining (2.46), (3.13), and (4.18b), we expect sample scales as ~ Nto t. 

k = 1 - p + ( r x +  a x s x )  = 7 - P + a x S x  for the algorithm with rtpi v -=- 1 . ]  The 
goal is to minimize the variance of ~ per unit CPU time, hence to maximize 
(X; X)e, ym~" • .V k~,. The optimal value Yrnin, opt as a function of ~ and k is 
shown in Table III, For d =  2 we have 7 = 1.34375<39'4~ and k,,~ 1.5 (see 
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Table III. Va lue of Ymin Maximiz ing ' k (X ,  X ) v  ' vmi~ x Ymin" for  Various Y and k 

k 7 = 1.0 7 = 1.1 ,/= 1.2 ,/= 1.3 y = 1.4 7 = 1.5 

1.0 0.057268 0.060042 0.062836 0.065635 0.068428 0.071208 
1.1 0 .065154 0.067848 0.070561 0.073279 0.075994 0.078696 
1.2 0 .073026 0.075623 0.078239 0.080863 0.083484 0.086094 
1.3 0 .080836 0.083325 0.085834 0.088353 0.090872 0.093382 
1.4 0.088545 0.090921 0.093319 0.095728 0.098139 0.100545 
1.5 0 .096125 0.098387 0.100672 0.102969 0.105271 0.107570 
1.6 0 .103556 0.105705 0.107876 0.110063 0.112255 0.114448 
1.7 0.110823 0.112860 0.114922 0.116999 0.119084 0.121171 
1.8 0.117915 0.119845 0.121800 0.123771 0.125751 0.127735 
1.9 0 .124826 0.126654 0.128505 0.130374 0.132254 0.134140 
2.0 0 .131552 0.133282 0.135036 0.136808 0.138591 0.140381 

Sect ion 5.1), so Ymin, opt ~0 .1 .  F o r  d =  3 we have 7 ~ 1.16, (41) and  we conjec- 
ture k ~ 1.2-1.3 (see Section 6), so Ymin, opt ~ 0.08. Final ly ,  for d>~ 4 we have 
7 = 1 and we conjec ture  k =  1 (see Sect ion 6), so Ymin, npt,~0.06. 

4 . 3 .  C o r r e c t i o n s  t o  S c a l i n g  

W e  now re turn  to the p rob l em of correct ions  to scaling. Clearly,  (1.5) 
is only the leading  te rm in the a sympto t i c  expans ion  of c N for large N; the 
r enormal i za t ion  g roup  predicts  (42~ tha t  the ac tua l  behav ior  is 

a~ a2 bo 
CN~] ~NNT-1 a o + ~ + ~ 5 +  "'" + N~---Z~ 

bl Co Cl ) 
+ ~-5-7~ + . . .  + ~ + ~ - 5 7 2 - 7 +  .-- (4.29) 

where A l <  A 2 < .- .  are cor rec t ion- to-sca l ing  exponents .  Here,  in add i t i on  
to analyt ic  correc t ions  of the form a k i n  k, there  are nonana ly t i c  correc t ions  
of the general  form cons t /N k13t+k~2+ ' +l, where k~, k2,..., and  l are non-  

negat ive integers. The  exponents  A~, A2 .... are bel ieved to be universal  
among  latt ices of a given d imens ion  d, while the ampl i tudes  a0, a~,..., 
bo, b~,..., Co, c~,.., are nonuniversa l .  

The m a x i m u m - l i k e l i h o o d  analysis  descr ibed above  is based  on the 
a s sumpt ion  that  (4.2) is exact  for N>~ Nr~in; if (4.29) is correct ,  then this 
a s sumpt ion  is in e r ror  by an a m o u n t  of o rde r  1/Nmin, where A -  
min(A1,  1). Thus  we expect  that  the es t imates  of ~ der ived using (4.2) have 
likewise a sys temat ic  e r ror  of this order  (as well as h igher -order  correc-  
t ions).  One should  therefore per form this analysis  for a var ie ty  of values of 
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N,~n and attempt an extrapolation to Ninon= oo. Of course, such an 
extrapolation is difficult, because the statistical error bars on ~7 grow 
rapidly with Nmm- Thus, some uncertainty about the "correct" Nm~ = oo 
limit of the central value ~ will inevitably remain. A subjective estimate of 
this residual uncertainty should therefore be reported as a possible 
systematic error induced by unaccounted-for corrections to scaling; it adds 
to the purely statistical error computed from (4.11) and embodied in the 
statistical error bars at each fixed Nm~. 

As a further consistency check, one can perform the foregoing analysis 
with (4.2) replaced by 

Cu=yVN~-l ( l + ~-5) ao (4.30) 

Here A and 52 are fixed constants, which are supposed to be guesses for the 
leading correction-to-scaling exponent and amplitude. We expect (9'43) that 
the estimates ~ will be "flattest" as a function of N~n~n when A and 52 are 
given their correct values: in this way, the leading correction-to-scaling 
term is canceled, and the systematic error is dominated by the next-to- 
leading correction term. This suggests that one should try a variety of 
values of A and 51 and select the ones that exhibit the weakest dependence 
on Nm~,. Unfortunately, the validity of the "flatness criterion" is guaranteed 
only for "sufficiently large" Nmm, and in practice it may not be possible to 
go to such a large Nm~n without incurring a statistical error so large as to 

m a s k  completely the corrections to scaling. In an y  case, we do our best 
to apply the "flatness criterion," and we report the residual uncertainty as 
a systematic error. 

For  further discussion of corrections to scaling, see ref. 9, pp. 503-505, 
and ref. 43. 

5. N U M E R I C A L  RESULTS 

We performed runs of the join-and-cut algorithm for SAWs on the 
square lattice ( d=  2) at a variety of values of Ntot and npiv: see Table IV. 
(We actually simulated the variant algorithm with N' in  = 1: see Remark 2 
in Section 2.1.) We took data once every two iterations15; all autocorrela- 
tion times reported here are measured in units of two iterations. We 
analyzed the data using standard procedures of statistical time-series 
analysis; more details can be found in ref. 3, Appendix C. We used in all 
cases a self-consistent truncation window of width 5r~t,A- 

15 Slightly better statistics would have been obtained by measuring every iteration, but lack 
of disk space made this inconvenient. 

822/67/1-2-7 
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Table IV. Number of Iterations 
Ntot 

Caracciolo e t  at. 

Performed (in 10 s) As a Funct ion  of  
and n p i  v 

Nto t npi v = 1 = 2 = 5 = I0 = 20 = 4 0  = 80 = 160 

500 46 4 2 2 2 2 4 4 

1000 46 4 2 2 4 4 4 

2000 105 4 2 2 2 4 

4000 63 4 2 2 2 3 

8000 25 4 2 2 2 4 

All error bars reported in this section are, except where otherwise 
specified, one standard deviation (i.e., 68 % confidence limits) and include 
statistical error only. It should be borne in mind that the systematic error 
arising from corrections to scaling may be much larger than the statistical 
errors. 

5.1. Acceptance Fraction and Dynamic Critical Behavior 

In Table V we report the acceptance fractions f - f ( j o i n - a n d - c u t )  
and f (p ivo t )  as a function of N~ot. From (2.30b) and (2.32), we expect 
that f ~ N ~  ~-1), where 7 - 1 = 1 1 / 3 2 = 0 . 3 4 3 7 5  in d = 2 ,  (39'4~ and 
f ( p i v o t ) ~ N t o  p, where p ~ 0 . 1 9  in d = 2 .  ~3) A least-squares fit to Table V 
yields the exponents 

(0.333 + 0.002 (Z 2 = 3.49, level = 32%) 
using all data points 

0.338 + 0.003 (Z 2 = 0.64, level = 73 % ) 
join-and-cut: using Ntot >~ 1000 (5.1) 

0.338 + 0.006 (Z 2 = 0.63, level = 43 % ) 
using Ntot >~ 2000 

pivot: 

'0.1967 ___ 0.0004 (Z2= 11.41, level = 1%) 
using all data points 

0.1963 + 0.0006 (Z 2 = 10.82, level = 0.5 % ) 
using Nto t/> 1000 

0.1935 + 0.0011 (~2 = 0.63, level = 43 %) 
using Nto t >i 2000 

(5.2) 

Here "level" is the probability that Z 2 would exceed the observed value, 
assuming the correctness of the power-law model and of the raw-data error 
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Table V. Acceptance Fractions for the Two Types of Moves a 
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Nto t Join-and-cut Pivot 

500 0.2323 4:_ 0.0005 0.3531 + 0.0002 
1000 0.1853 ___+ 0.0005 0.3082 + 0.0002 
2000 O. 1468 + 0.0005 0.2682 + 0.0002 
4000 O. 1157 _____ 0.0006 0.2347 + 0.0002 
8000 0.0922 _____ 0.0008 0.2050 ___+ 0.0003 

Error bars are one standard deviation. 

bars; it can serve as a test of goodness of fit. An abnormally large value of 
s (say, a level less than 5 %) may indicate ei ther that the pure power-law 
Ansatz is incorrect (e.g., due to corrections to scaling) or else that the 
claimed error bars on the raw data are too small; further investigation 
would be necessary to determine which of these is the true cause. An 
abnormally small value of Z 2 (say, a level greater than 95%)  probably 
indicates that the claimed error bars on the raw data are too large. The fits 
(5.1)-(5.2) indicate good agreement with the predicted exponents, up to 
possible systematic errors of magnitude ~0.005-0.01 due to corrections to 
scaling. 

In Table VI we report the autocorrelation time ~int, x for the observable 
X - l o g [ N l ( N t o t -  Nt ) ] ,  as a function of Ntot and/'/piv. Plots of rint, x versus 
1/nvi v for each fixed Ntot are remarkably linear (except that for N t o  t = 500 
we must discard np~ = 1, 2), in agreement with the hand-waving prediction 
(2.39). The linear least-squares extrapolation t o  1 /np i  v = 0 is reported in the 
final column of Table VI (the error bar denotes statistical error only: 
possible systematic errors in the extrapolation are ignored). A least-squares 
fit of the extrapolated Tint, x ( n p i v - = O g )  values versus Nto t yields the 
exponent estimates 

(0.400 _+ 0.007 (Z 2 = 4.30, level = 23 % ) 
using all data points 

~] 0.396 +_ 0.010 (;(2 = 3.87, level = 14%) 
r x  = ] using Ntot >~ 1000 

~0.373 +0.020 (X2=2.02,1evel 16%) 
k, using Ntot >/2000 

(5.3) 

The systematic downward trend in the exponent appears to indicate the 
presence of a strong correction-to-scaling term. (The lack of improvement 
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in the goodness of fit as points at low Nto t are discarded suggests that the 
corrections are still strong at Nto t =2000.) Indeed, from the bound (2.28) 
it follows rigorously that r x < ~ 7 - 1  (=0.34375) if one assumes that an 
Ansatz of the form (2.35) holds with F x ( o o ) > 0 .  Therefore, the estimates 
(5.3) cannot have yet reached the asymptotic regime. In any case, the final 
estimate 0.373 _+ 0.020 is already in fair agreement with the prediction r x = 

- 1 = 0,34375 [see (2.36)]. 
Next we fix r x =  7 - 1 = 11/32 and attempt to fit ~nt, x at f in i t e  npiv to 

the scaling Ansatz (2.35). To do this, we plot "cint, x/N'(ot  1 versus npiv/NtSXot 
and adjust sx  until the points fall roughly on a single curve Fx(z) .  
Reasonable fits are obtained for sx  anywhere between ,~0.50 and ~0.75; 
we therefore estimate 

sx  = 0.63 +_ 0.13 (5.4) 

(subjective 68 % confidence limits). This is compatible with the prediction 
s x =  p + 7 - 1  ~ 0.54 ]-see (2.44)]. In Fig. 2 we show the scaling plots for 
sx  = 0.54 and Sx = 0.63. 

Next we analyze the scaling function F x ( z  ) in the two limiting regimes 
z--+ 0 and z--+ ~ [see (2.45) and (2.39)]. For  z-+ 0, we fit the data to 
F x ( z ) , , ~ z  -ax by drawing the estimated asymptote as z - + 0  on a log-log 
plot (see Fig. 2); this yields the crude estimates 

~'0.61 + 0.08 if sx  = 0.54 (5,5) 

ax ~ (0.56 + 0.06 if s x = 0.63 

However, the curvature seen in Fig. 2 may well continue to yet smaller 
values of z, in which case the true ax  would be higher than these estimates. 
To extract the behavior as z--+ oo and test the prediction (2.39), we plot 
F x ( z )  versus 1/z in Fig. 3. The asymptotic behavior as 1/z --+ 0 is amazingly 
linear all the way up to 1/z < 100-300. Only the six lowest points (corre- 
spondingly to 1/z < 2-3) seem to deviate systematically from this linear 
behavior; and since these points correspond to the lowest values of Nto t 

(namely Nto t = 500, 1000), this deviation may well be due to corrections to 
scaling (see Appendix). It is thus conceivable that the conjectured behavior 
F x ( z ) = F x ( o o ) + c o n s t / z  ~1 may hold not only for large z, but in fact for 
all z (at least in some approximate sense). In this case we would have 
ax ,~  1; and the lower value of ax  found in (5.5) would be attributable to 
the large additive constant (about 1/4 of the total value) present even at 
z,-~0.01. In order to test this conjecture, we will need better data, over a 
larger range of values of z (in both directions), and possibly at larger 
values of Nto t. 
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.5 

i 

.2 

.I 
0.001 

s x = 0 . 5 4  

, ~ , , . I  . . . .  

0.01 .I 1 1Q 

Z : npiv/]~toO x 

s x = 0 . 6 3  

z 

i- 

.5 

.2 § § § § 

.i ......... I ........ I ........ [ ........ 

0 . 0 0 1  0 . 0 1  .1 1 1 0  

z ~ npi~/Ntot sx 

-- sx Fig. 2. Log-log plot of "tint,x/Nt~ot 1 versus z = npiv/Nto t for (a)sx= 0.54, (b)Sx= 0.63. Points 

are Ntot = 500 (+), 1000 (x), 2000 ([]), 4000 (O), and 8000 (�9 note that they fa]l roughly 

on a sing|e curve fx(Z). Straight line indicates the estimated asymptote as z -~ 0. 
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Finally, we fit r~nt, x at npi v = 1 versus Nto t [-see (2.46)]" we find 

q x  = 

"0.646 +0.012 ()~2 = 3.48, level = 32%) 
using all data points 

0.667 -t- 0.019 (Z 2 = 1.41, level = 49 % ) 
using Ntot ~> 1000 

0.699 +_ 0.033 ()~2 = 0.001, level = 97 %) 
using Nto t ) 2000 

(5.6) 

The estimated exponent shows a clear rise as a function of Ntot, indicating 
a crossover between the exponent r x = 7 - 1  =0.34375 valid for Ntot < 
n~{~vX,,~n ~1"8 and the exponent q x  valid for Ntot ~ oe at fixed npi~. This piv 
suggests that q x  is at  leas t  0.699-t-0.033 and quite possibly larger. In any 
case, this estimate is in good agreement with the prediction 

~0.68 _+ 0.04 if sx-= 0.54 (5.7) 
q x  = ? - 1 + a x S x  = (0.70 + 0.03 if Sx  = 0.63 

5.2. Estimates of y 

We computed maximum-likelihood estimates of the critical exponent 7 
defined by 

CN~IANN ~1 1 -'~- ~--~ for N ~ N m i  n (5.8) 

where A is a guess for the leading correction-to-scaling exponent A = 
min(zI1, 1), and 51 is a guess for the corresponding amplitude (see 
Section 4.3). We used A = 11/16 and A = 1, together with a variety of values 
of N,~in and 51. Here A1 = 11/16 is the most likely conformal-invariance 
prediction for the correction-to-scaling exponent in the two-dimensional 
SAW, (44'45) while A = 1 is the most plausible behavior in case the non- 
analytic correction-to-scaling is weak or absent. We performed this analysis 
separately for each run [i.e., for each pair (Ntot, npiv)], and then combined 
the estimates according to (4.24). The final results are shown in Table VII. 
It is somewhat difficult to apply the "flatness criterion"(9'43): for any ~1 
in the range 0.5 < 5 1 < 2 . 3  (A = 1) or 0 . 3 < 5 1 < 0 . 9  (A= 11/16), we obtain 
flatness within error bars for Nmi, > 80. (We define "flatness" as minimizing 
the spread among the various estimates for Nmi n/> 80.) Our final estimates 
for 7 are 

~ 1.3523 + 0.0074 + 0.0060 assuming A = 1 
7 

_ _ 
(5.9) 

(1 .3557+0.0092+0.0060 assuming A = 11/16 
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where the first error bar represents systematic error due to corrections to 
scaling (95% subjective confidence limits) and the second error bar 
represents statistical error (95 % classical confidence limits). We are unable 
to distinguish between the two proposed forms for the correction-to-scaling 
term. These estimates are, in any case, in good agreement with the believed 
exact value 7 = 43/32 = 1.34375. (39,40) 

We want to emphasize that these estimates of 7 are based on an 
extremely modest CPU time (about 300 VAX hours; see Section 5.3 
below); they are far from being the "state of the art" for estimating 7. 
Indeed, in this paper our main interest has been to analyze the dynamic 
critical behavior of the join-and-cut algorithm; we saw little value in investing 
large amounts of CPU time in order to estimate a critical exponent that is 
already known exactly! The reader should rest assured that 'we will make 
a more serious effort to estimate 7 in the three-dimensional SAW. (46) 

5.3. Computational Complexity 

In Table VIII we give some information on the computational com- 
plexity of the algorithm. (Recall that we are using the "improved" algo- 
rithm described in Section 3.2.) The first column reports the probability of 
finding a "blank" hash table for the walk that is proposed to grow in 
length, conditioned on failure of the join-and-cut move. 16 The second and 
third columns report the mean number of hash-table insertions in a join- 
and-cut move, conditioned on either success or failure. The last column 

~6 We also should have measured this quantity conditioned on success, but we forgot. 

Table VIII. Mo re  Deta i led Information on the Compu ta t i ona l  Comp lex i t y  
for the Two Types of Moves  a 

N~o~ 

Join-and-cut Pivot 

Percent failures Hash-table Hash-table Hash-table 

with blank insertions insertions insertions 

hash table per success per failure per failure 

500 0.1363 _ 0.0004 200.1 _ 0.7 

1000 0.1276 _ 0.0004 407.5 + 1.7 

2000 0.1165 ___ 0.0004 827.8 _ 4.6 

4000 0.1036 __+ 0.0005 1683 _ 12 

8000 0.0920 + 0.0007 3434 + 44 
i 

a Data  are taken for npi v = 1, but the last three 

20.68 + 0.05 20.63 _ 0.03 

32.06 + 0.09 33.33 __+ 0.04 

49.79 + 0.18 54.76 _ 0.08 

76.59 + 0.36 90.23 ___ 0.13 
1 1 9 . 9  _ 0.9 151.0 + 0.4 

columns are independent of n p i  v . 
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reports the mean number of hash-table insertions in a pivot move, condi- 
tioned on failure. These data were obtained from the runs with npi v = 1, but 
all except the first column are independent of np~v. 

In Section 3 we predicted that these columns should scale with critical 
exponents 1 - 7 + p ~ - 0 . 1 5 ,  1, 2 - 7 = 2 1 / 3 2 ~ 0 . 6 6 ,  and 1 - p ~ 0 . 8 1 ,  
respectively. Least-squares fits yield the following estimates: 

Blank hash table: 

f -0.133 + 0.002 ( ) t2  = 84.04, level = 4 x 10 18) 
using all data points 

-0.153 _ 0.003 (g 2 = 14.52, level = 0.07 %) 
using Ntot >~ 1000 

-0.170 ___ 0.005 (X 2 = 0.012, level = 91%) 
using Ntot t> 2000 

(5.10) 

Join-and-cut (success): 

1.024 _+ 0.003 (g 2 = 0.10, level = 99 %) 
using all data points 

1.024 _+ 0.005 (Z 2 = 0.08, level = 96 % ) 
using Ntot >/1000 

1.025 _+ 0.009 (X 2 = 0.03, level = 86 % ) 
using Nto t ~> 2000 

(5.1l) 

Join-and-cut (failure): 

f 
0.632 _+ 0.002 (22 = 2.04, level = 56 %) 

using all data points 

0.632 + 0.003 (Z 2 = 2.01, level 37 %) 
using Nto t/> 1000 

0.630 + 0.005 ()~2 = 1.95, level 16 %) 
using Nto t t> 2000 

(5.12) 

Pivot (failure): 

f 
0.715 + 0.001 (Z 2 = 130.38, level = 4 x 10 28) 

using all data points 

0.722 + 0.001 (Z 2 = 27.29, level -- 10 -6) 
using Nto t ) 1000 

0.729 _+ 0.002 (Z z = 13.79, level = 0.02 % ) 
using Ntot ~> 2000 

(5.13) 
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Table IX. CPU Time per Iteration, in Milliseconds, 
on a VAX 8650 Running V M S  Fortran Version 5.6 a 

Nto t npiv = 1 = 2 = 5 = 10 = 20 =40 = 80 = 160 

500 10 17 38 74 146 289 577 1149 
1000 16 28 62 123 243 477 953 
3000 27 47 105 206 406 811 
4000 44 78 181 352 703 1381 
8000 68 135 309 596 1194 2395 

Errors are of the order of 1%. 

The data  in the first and fourth columns show strong curvature on a log- 
log plot, as reflected by the poor  goodness of fit. Hence these exponent  
estimates are presumably afflicted by a large systematic error. In  any 
case, all but  the last column are in reasonably good  agreement with the 
predicted exponents.  

Our  measurements  of hash-table insertions in the pivot algori thm 
agree perfectly with those of Madras  and Sokal (ref. 3, Section4.4, 
Table VI), if one makes the correspondence N+--~ ( N ) =  Nto,/2.17 Indeed, 
Madras  and Sokal found an exponent  0.745_+ 0.005, in good agreement 
with ours, and were puzzled by the discrepancy with the predicted 
exponent  1 - p  ~ 0.81. However,  our  reanalysis of the Madras -Soka l  data  
shows that the exponent  drifts upward from 0.745 to 0.777 as the data  
points at low N are successively removed, with every indication that  the 
upward trend would persist for N >  10000. Our  own data f rom the last 
column of  Table VI I I  show a similar but weaker trend. Therefore, the 
discrepancy from the predicted exponent  can plausibly be explained as an 
effect of corrections to scaling. In any case, it would be useful to clarify this 
issue in future work on the pivot algorithm. 

In Table IX we report  the C P U  time per iteration (on a VAX 8650 
running VMS For t r an  version 5.6) for the join-and-cut  algorithm, as a 
function of Ntot and npi v. These measurements  fit reasonably well the form 

Tcr, U = a N  t2~ 7 + bnpi v N ~t p (5.14) 

predicted in (3.12), with a ,~ 0.045 and b ~ 0.043. 

,7 In our algorithm, N (=N~ or N2) iS a random variable with the distribution (4.l). 
However, since E(work)~N 1 p with 1--p close to 1, we have <E(work)> ~ <Nt-P>~ 
(N> l-p. Hence it is reasonable to compare our data (N variable with those of Madras and 
Sokal (N fixed). 
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Our simulations took a total of approximately 1600 hr of CPU time 
on a VAX 8650 running VMS Fortran. Most of this time was spent in the 
simulations at large r /p iv ,  which were needed for our study of the dynamic 
critical behavior. Only about 230hr was spent at n p i  v =  1, which con- 
tributed the bulk of the statistics used in the determination of 7- 

6. C O N C L U S I O N S  

In this paper we have introduced a new algorithm for simulating self- 
avoiding walks with variable length and free endpoints, and thereby 
estimating the critical exponent 7. We have analyzed rigorously an 
"idealized" version of the algorithm (Sections 2.1 2.3), and have proposed 
heuristic scaling relations for the dynamic critical exponents that arise in 
the "practical" version of the algorithm (Sections 2.4-2.5). In two dimen- 
sions, we have measured these exponents, and have verified the scaling 
relations to modest accuracy (Section 5.1). 

The best choice in practice is n p i  v = 1: empirically this minimizes the 
autocorrelation time Zint, X measured in CPU units, as can easily be seen by 
multiplying the entries in Tables VI and IX. For npiv = 1 (or a n y f i x e d  n p i v )  , 

the autocorrelation time Vint, X measured in units of i t e r a t i o n s  scales as 

where 

qx (6.1) ~7int, X N t o t  

q x  = r x + a x s x  

= 7 - l + a x S  x (6.2) 

Here the exponents rx and S x  are defined in the scaling Ansatz (2.35), and 
a x  is defined in (2.45). In (2.44) we predict s x ~ p + v - 1  (where p is the 
acceptance-fraction exponent of the pivot algorithm), but we are unable to 
predict a x .  On the other hand, the CPU time per iteration scales as 

E(work per iteration) ~ N~t  p (6.3) 

I-see (3.13)]. Therefore, the autocorrelation time measured in CPU units 
scales as 

~cpu) ,,~ N k (6.4) int, X tot 

where 

k = q x +  ( l - p )  

= 7 - P + a x S x  (6.5) 

The exponent k thus controls the statistical efficiency of the algorithm. 
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In dimension d =  2, our measurements yield 

and hence 

qx~ 0.70 -4- 0.05 (6.6) 

1 - p ~ 0.81 -t- 0.01 ( 6 . 7 )  

k ~  1.51 +0.06 (6.8) 

This is a significant improvement over the behavior z(Cl, U)~N~2 -int of the 
Berretti-Sokal algorithm. (9-u) 

In dimensions d > 2  we expect that the behavior of the join-and-cut 
algorithm will improve further. Indeed, it is known that 

~ 3 4 3 7 5  for d = 2  (39'4~ 

r x = 7 -  1= ~ 0 . 1 6  for d = 3  (41) (6.9) 

to for d~>4 

and 
0.81 for d = 2  (3) 

1 - p ~  t~.89 for d = 3  (2v) 
for d~>4 (predicted) 

(6.10) 

- - in  both cases modulo logarithms for d =  4. [Here the prediction for p in 
d >t 4 follows from the empirical inequality 0 ~< p ~< ~ - 1 as well as from the 
heuristic arguments (ref. 3, Section 3.2) relating p to 7 -  1.] From this we 
deduce that 

~ 0.54 for d = 2  

sx~P+7-1~lO0.27 for d = 3  
for d>~4 

(6.11) 

Unfortunately we have no precise prediction for the exponent ax. But 
provided only that ax remains finite for d>~4, we can conclude that 
axsx=O for d>~4 and hence that 

k = l  for d~>4 (6.12) 

(modulo logarithms in d =  4). If, in addition, the exponent k varies in a 
reasonably sooth and monotonic manner as a function of d, then it is 
reasonable to guess that k ~ 1.2-1.3 in d =  3~ 

Thus, in dimension d>~4 we expect the join-and-cut algorithm to 
generate an "effectively independent" sample from the distribution (1.3) in 
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a CPU time of order Ntot. This behavior is essentially optimal, since it 
takes a time of order N merely to write down an N-step walk! 18 Even in 
dimensions d = 2, 3 the behavior is not far from optimal. 

The behavior ~.~cPts) k ~int,g ~Ntot of the join-and-cut algorithm can be 
compared with the behavior ~.~cPts) N of the pivot algorithm. In a certain 

- i n t  ~'~ 

sense, the residual factor N k-  ~ is the price we pay (in dimensions d <  4) for 
obtaining an ensemble of SAWs with variable rather than fixed N. 

Using the join-and-cut algorithm, we expect to produce in the near 
future a high-precision Monte Carlo determination of the exponent 7 
in the d = 3  SAW. (46) In dimension d = 4  we would like to measure the 
logarithmic exponent ~7 defined by 

C N ~ / I N ( l o g  N) ~ (6.13) 

and in particular to test the renormalization-group prediction (47-49) ]7 = 1/4. 
From a statistical point of view this problem is several times more difficult 
than estimating the leading exponent 7, because var(log log N) is several 
times smaller than var(log N). However, the most serious difficulty may 
come from corrections to scaling, which are expected to be of the form 

I g l o g N  log---N1 C~v"~/~N(1og N) ~ ao 1+  bll l ~  + bol 

log log N 1 ] 
+ b12 (log N) 2 q- bo2 (log N) ~ + . . .~ (6.14) 

where bll is a universal coefficient that can be computed from the 
renormalization group, and the other coefficients are nonuniversal. The 
corrections to scaling are thus extremely slowly decreasing in N. The 
extraordinary efficiency of the join-and-cut algorith m will allow us to go to 
very large values of N, of order 10000 or more. But it remains to be seen 
whether such values of N are large enough to see clearly the true 
asymptotic behavior. 

A P P E N D I X  

More rigorous statistical analysis shows that the fit to a straight line 
in Fig. 3 is not as good as it seems: for Sx = 0.54, the Z 2 values are 

18 In principle, one could imagine generating directly the correct probability distribution of 
Nl, without actually generating the walks (~ol, e~2). But we cannot conceive of how to 
implement such a scheme in practice, short of solving analytically for the {cu}. 
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101.60 (31 d.f., level = 2 x 10 - 9 )  using all data points 

60.89 (23 d.f., level = 0.003 %) using Ntnt ~> 1000 

Z 2 = 28.97 (16 d.f., level = 2.4 %) u s i n g  Nto t ) 2000 

18.99 (10 d.f., level = 4.0 % ) u s i n g  Nto t ~> 4000 

9.17 (4 d.f., level = 5.7 %) u s i n g  Nto t = 8000 

(For sx=0 .63  the )~2 values are slightly larger.) However, these values of 
Z 2 could be explained if for some reason we had underestimated the error 
bars on rint, x by a factor of ~1.4. The straight lines in Fig. 3 are the 
weighted-least-squares fits to the data with Nto t ) 2 0 0 0 ;  they are given by 

~0.20275 + 0.00440/z for Sx= 0.54 
Fx(z) = [0.20370 + 0.00207/z for sx = 0.63 
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